Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

$\beta-\mathrm{Zn}_{3}\left(\mathrm{AsO}_{3}\right)_{2}$

William T. A. Harrison

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
Correspondence e-mail: w.harrison@abdn.ac.uk

Received 26 April 2010
Accepted 11 May 2010
Online 14 May 2010
In the title compound, trizinc(II) diarsenite or trizinc(II) bis[trioxidoarsenate(III)], the constituent polyhedra that make up the structure are very distorted ZnO_{4} tetrahedra and AsO_{3} trigonal pyramids. These species fuse together to generate a three-dimensional network containing unusual edge-sharing tetrahedra, with a $\mathrm{Zn} \cdots \mathrm{Zn}$ separation of 2.903 (3) \AA. The structure also features eight-ring pseudochannels occupied by the $\mathrm{As}^{\text {III }}$ lone pairs of electrons. The title compound is a polymorph of the mineral reinerite, which also features edge-shared ZnO_{4} tetrahedra.

Comment

$X \mathrm{O}_{4}$ tetrahedra rarely share edges in crystal structures. The reason given historically is the unfavourable Coulombic repulsion that occurs due to the close contact of the central cations through the shared edge (Wells, 1962). However, a few structures containing such edge-shared tetrahedra are known, including the (non-isostructural) phases $\mathrm{K}_{6} \mathrm{Mn}_{2} \mathrm{O}_{6}$ and $\mathrm{K}_{6} \mathrm{Fe}_{2} \mathrm{O}_{6}$, which contain isolated $\left[M_{2} \mathrm{O}_{6}\right]^{6-}\left(M=\mathrm{Mn}^{\mathrm{III}}\right.$ or $\left.\mathrm{Fe}^{\mathrm{III}}\right)$ tetrahedral pairs (Brachtel \& Hoppe, 1978). For the first of these, the complete edge-shared tetrahedral pair is generated by $2 / m$ crystallographic site symmetry and the $\mathrm{Mn} \cdots \mathrm{Mn}$ separation is $2.780 \AA$ (s.u. values not supplied by authors). For $\mathrm{K}_{6} \mathrm{Fe}_{2} \mathrm{O}_{6}$, the tetrahedral pair has inversion symmetry and the $\mathrm{Fe} \cdot \mathrm{Fe}$ separation is $2.713 \AA$.

The phases $\mathrm{Cs}_{2} \mathrm{Co}^{\mathrm{II}} \mathrm{SiO}_{4}$ and $\mathrm{Cs}_{5} \mathrm{Co}^{\mathrm{III}} \mathrm{SiO}_{6}$ (Hansing \& Möller, 2001) contain the novel combination of edge-sharing CoO_{4} and SiO_{4} tetrahedra $[\mathrm{Co} \cdots \mathrm{Si}=2.630$ (8) and 2.7099 (19) \AA for $\mathrm{Cs}_{2} \mathrm{CoSiO}_{4}$ and $\mathrm{Cs}_{5} \mathrm{CoSi}_{6}$, respectively]. The rare earth borates $\alpha-\mathrm{Ln}_{2} \mathrm{~B}_{4} \mathrm{O}_{9}(\mathrm{Ln}=\mathrm{Eu}, \mathrm{Gd}, \mathrm{Tb}$ or Dy$)$ (Emme \& Huppertz, 2003), made under very high pressure ($>8 \mathrm{GPa}$), contain novel $\mathrm{B}_{2} \mathrm{O}_{6}$ groups (i.e. edge-sharing BO_{4} tetrahedra) with unprecedented short inversion-generated B $\cdots \mathrm{B}$ contacts [e.g. 2.04 (2) \AA in $\alpha-\mathrm{Gd}_{2} \mathrm{~B}_{4} \mathrm{O}_{9}$] as part of an extended boron/oxygen network also containing cornersharing BO_{4} groups.

The mineral epididymite, of ideal composition $\mathrm{Na}_{2} \mathrm{Be}_{2^{-}}$ $\mathrm{Si}_{6} \mathrm{O}_{15} \cdot \mathrm{H}_{2} \mathrm{O}$ (Gatta et al., 2008), contains edge-sharing BeO_{4} tetrahedra $\left[\overline{1} ; \mathrm{Be} \cdots \mathrm{Be}=2.3148\right.$ (5) \AA] within an infinite $\mathrm{BeO}_{4} /$
SiO_{4} array. Another mineral, reinerite, $\mathrm{Zn}_{3}\left(\mathrm{AsO}_{3}\right)_{2}$ (Ghose et al., 1977), hereinafter referred to as the α modification (space group Pbam) of this stoichiometry, contains edge-shared ZnO_{4} tetrahedra $[\mathrm{Zn} \cdots \mathrm{Zn}=2.8974$ (13) \AA; a crystallographic mirror plane generates the complete edge-shared unit] as well as vertex-sharing ZnO_{4} groups.

In this paper, we report the solution-mediated synthesis and single-crystal structure of the title compound, $\beta-\mathrm{Zn}_{3}\left(\mathrm{AsO}_{3}\right)_{2}$, a polymorph of reinerite which also contains edge-shared ZnO_{4} tetrahedra.

Selected bond distances and angles for $\beta-\mathrm{Zn}_{3}\left(\mathrm{AsO}_{3}\right)_{2}$ are presented in Table 1 and its structure is illustrated in Fig. 1. There are three Zn , two As and six O atoms in the asymmetric unit. Both As atoms form the centres of isolated (from each other) trigonal-pyramidal $\left[\mathrm{AsO}_{3}\right]^{2-}$ arsenite groups, with the unobserved $\mathrm{As}^{\text {III }}[\mathrm{Ar}] 3 d^{10} 4 s^{2}$ lone pair of electrons presumed to occupy the fourth tetrahedral vertex. The mean As-O bond length and its estimated error (Taylor \& Kennard, 1983) of $1.763 \pm 0.016 \AA$ in $\beta-\mathrm{Zn}_{3}\left(\mathrm{AsO}_{3}\right)_{2}$ is similar to that in reinerite (1.769 \AA; Ghose et al., 1977) and slightly less than that in leitite, $\mathrm{ZnAs}_{2} \mathrm{O}_{4}(1.784 \AA$; Ghose et al., 1987), which contains infinite catena-arsenite chains. The $\mathrm{O}-\mathrm{As}-\mathrm{O}$ bond angles in $\beta-\mathrm{Zn}_{3}\left(\mathrm{AsO}_{3}\right)_{2}$ are clustered in the narrow range $94.3(5)-$ $98.6(4)^{\circ}$, all far smaller than the nominal tetrahedral bond angle of 109.5°, perhaps indicating that the $s p^{3}$ hybridization model that justifies the pyramidal shape of the arsenite ion is simplistic. The As atoms are displaced from the planes of their three attached O atoms by 0.876 (6) (As1) and 0.888 (6) \AA (As2).

The three Zn atoms in $\beta-\mathrm{Zn}_{3}\left(\mathrm{AsO}_{3}\right)_{2}$ form the centres of tetrahedral ZnO_{4} groups. Both $\mathrm{Zn1}$ and Zn 2 share each of their four O -atom vertices with an As atom and a Zn atom, and unexceptional mean $\mathrm{Zn}-\mathrm{O}$ distances of 1.969 ± 0.011 and $1.965 \pm 0.027 \AA$ arise for Zn 1 and Zn 2 , respectively. The $\mathrm{Zn} 3-$ centred tetrahedra form an edge-shared pair in $\beta-\mathrm{Zn}_{3}\left(\mathrm{AsO}_{3}\right)_{2}$

Figure 1
The asymmetric unit of $\beta-\mathrm{Zn}_{3}\left(\mathrm{AsO}_{3}\right)_{2}$, expanded to show the coordination environments of the Zn atoms and the edge-sharing $\mathrm{Zn3O}_{4}$ groups. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $1-x,-y, 1-z$; (iii) x, $\frac{1}{2}-y, z-\frac{1}{2}$; (iv) $-x, y+\frac{1}{2}, \frac{1}{2}-z ;$ (v) $x, \frac{3}{2}-y, z-\frac{1}{2} ;(\mathrm{vi}) x, y+1, z$.]

Figure 2
Projection down [010] of the structure of $\beta-\mathrm{Zn}_{3}\left(\mathrm{AsO}_{3}\right)_{2}$, with the ZnO_{4} groups represented as polyhedra. In the electronic version of the paper, the Zn 1 - and Zn 2 -centred vertex-sharing tetrahedra are lilac, and the Zn3-centred edge-sharing groups are green.
(Fig. 1) and a similar mean $\mathrm{Zn} 3-\mathrm{O}$ distance of $1.964 \pm 0.019 \AA$ results. In terms of the variation ζ (Robinson et al., 1971) of the $\mathrm{O}-\mathrm{Zn}-\mathrm{O}$ bond angles from their nominal ideal values of 109.5°, the $\mathbf{Z n} 2$ tetrahedron displays a moderate degree of distortion, with $\zeta=36.6^{\circ 2}$, whereas the Zn 1 and Zn 3 polyhedra are grossly distorted ($\zeta=161.6$ and $204.5^{\circ 2}$, respectively). The displacements of the Zn atoms from the geometric centres (mean location of their four attached O atoms) are $0.19,0.13$ and $0.14 \AA$ for $\mathrm{Zn} 1, \mathrm{Zn} 2$ and Zn 3 , respectively.

It is notable that all six asymmetric O atoms in $\beta-\mathrm{Zn}_{3^{-}}$ $\left(\mathrm{AsO}_{3}\right)_{2}$ are tricoordinated to two Zn atoms plus one As atom, rather than their more common bicoordinate bridging mode. The mean $\mathrm{Zn}-\mathrm{O}-\mathrm{Zn}$ and $\mathrm{Zn}-\mathrm{O}-$ As angles are 109.7 ± 7.2 and $123.6 \pm 7.5^{\circ}$, respectively. For each O atom, its $\mathrm{Zn}-\mathrm{O}-\mathrm{Zn}$ angle is smaller than its two $\mathrm{Zn}-\mathrm{O}-$ As angles. Atom O6 plays a key role by bridging the two Zn 3 atoms in the edgeshared tetrahedra, as well as linking to As2. For nominally undistorted tetrahedra, the calculated $\mathrm{Zn}-\mathrm{O}-\mathrm{Zn}$ bond angle for an edge-shared pair is 70.5° and the $\mathrm{Zn} \cdots \mathrm{Zn}$ separation is $2.266 \AA$, assuming a $\mathrm{Zn}-\mathrm{O}$ distance of $1.964 \AA$; the actual values of 94.9 (5) ${ }^{\circ}$ and 2.903 (3) \AA in $\beta-\mathrm{Zn}_{3}\left(\mathrm{AsO}_{3}\right)_{2}$ indicate the high degree of distortion that must occur to allow the tetrahedral edge-sharing interaction.

It seems remarkable that $\beta-\mathrm{Zn}_{3}\left(\mathrm{AsO}_{3}\right)_{2}$, as a polymorph of reinerite, also features the very unusual situation of edgeshared ZnO_{4} tetrahedra. Comparing $\beta-\mathrm{Zn}_{3}\left(\mathrm{AsO}_{3}\right)_{2}$ and reinerite indicates that the two structures share some common features but also some significant differences. When $\beta-\mathrm{Zn}_{3^{-}}$ $\left(\mathrm{AsO}_{3}\right)_{2}$ is viewed in projection down [010] (Fig. 2), the edgeshared tetrahedral pairs bridge the layers, forming a threedimensional network. The structure features distinctive [010] pseudo-channels [shortest As \cdots As separation $=4.811$ (2) \AA], delineated by four ZnO_{4} and four AsO_{3} polyhedra; it seems that these channels could provide the required space for the $\mathrm{As}^{\mathrm{III}}$ lone pairs. In $\beta-\mathrm{Zn}_{3}\left(\mathrm{AsO}_{3}\right)_{2}$, the $\mathrm{Zn} \cdots \mathrm{Zn}$ axis of the

Figure 3
Projection down [001] of the structure of reinerite [redrawn from the data of Ghose et al. (1977)], with the ZnO_{4} groups represented as polyhedra. The colour key is the same as that used for Fig. 2.
tetrahedral pair lies roughly perpendicular to the channels. The spatial requirement of lone pairs of electrons in oxoanions has also been noted in tellurites (Brown, 1974) and selenites (Johnston \& Harrison, 2001).

The structure of reinerite, when viewed down [001] (Fig. 3), shows similar eight-ring lone-pair channels, but the role of the edge-sharing tetrahedral pair is different; in this structure, the $\mathrm{Zn} \cdots \mathrm{Zn}$ axes lie parallel to the [001] direction and hence serve to line the lone-pair channel. A comparison of the densities of $\beta-\mathrm{Zn}_{3}\left(\mathrm{AsO}_{3}\right)_{2} \quad\left[4.383 \mathrm{Mg} \mathrm{m}^{-3}\right]$ and reinerite $\left[4.283 \mathrm{Mg} \mathrm{m}^{-3}\right.$] suggests that $\beta-\mathrm{Zn}_{3}\left(\mathrm{AsO}_{3}\right)_{2}$ may be more stable than reinerite at low temperatures, in terms of the 'density rule' of Burger \& Ramberger (1979).

Experimental

$\mathrm{ZnO}(0.156 \mathrm{~g})$ and $\mathrm{NaAsO}_{2}(0.500 \mathrm{~g})$ were placed in a 23 ml Teflonlined autoclave with water $(10 \mathrm{ml})$. The sealed vessel was heated to 423 K for 3 d and then cooled slowly to room temperature. Upon opening the autoclave, tiny rhombs and blocks of $\beta-\mathrm{Zn}_{3}\left(\mathrm{AsO}_{3}\right)_{2}$ were recovered, accompanied by significant amounts of unreacted ZnO .

Crystal data

$\mathrm{Zn}_{3}\left(\mathrm{AsO}_{3}\right)_{2}$
$M_{r}=441.95$
Monoclinic, $P 2_{1} / c$
$a=8.2438$ (8) A
$b=5.1781$ (4) \AA
$c=15.8222$ (16) \AA
$\beta=97.445(5)^{\circ}$

Data collection

Nonius KappaCCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2003)
$T_{\text {min }}=0.685, T_{\text {max }}=0.905$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$	101 parameters
$w R\left(F^{2}\right)=0.152$	$\Delta \rho_{\max }=1.59 \mathrm{e}^{-3}$
$S=1.04$	$\Delta \rho_{\min }=-1.92 \mathrm{e}^{-3}$

$V=669.71(11) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=20.44 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
$0.02 \times 0.01 \times 0.01 \mathrm{~mm}$

7371 measured reflections
1547 independent reflections 921 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.154$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Zn} 3-\mathrm{O}^{\mathrm{i}}$	$1.937(10)$	$\mathrm{Zn} 3-\mathrm{O} 6$	$1.973(10)$
$\mathrm{Zn} 3-\mathrm{O}^{\mathrm{ii}}$	$1.968(10)$	$\mathrm{Zn} 3-\mathrm{O} 2$	$1.977(9)$
O3 $^{\mathrm{i}}-\mathrm{Zn} 3-\mathrm{O}^{\mathrm{ii}}$	$116.4(4)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Zn} 3-\mathrm{O} 2$	$103.1(4)$
O3 $^{\mathrm{i}}-\mathrm{Zn} 3-\mathrm{O} 6$	$125.3(4)$	$\mathrm{O}^{\mathrm{ii}}-\mathrm{Zn} 3-\mathrm{O} 2$	$118.8(4)$
O6 $^{\mathrm{ii}}-\mathrm{Zn} 3-\mathrm{O} 6$	$85.1(5)$	$\mathrm{O} 6-\mathrm{Zn} 3-\mathrm{O} 2$	$108.6(4)$

Symmetry codes: (i) $x, y+1, z$; (ii) $-x+1,-y+1,-z+1$.

The crystal used for data collection was very small and a rather weak diffraction pattern arose. This probably correlates with the rather high $R_{\text {int }}$ value and a degree of noise in the final difference map; the deepest hole and highest peak are 0.93 and $0.74 \AA$, respectively, from As2.

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO (Otwinowski \& Minor, 1997), SCALEPACK and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The author thanks the EPSRC National Crystallography Service (University of Southampton) for the data collection.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FA3222). Services for accessing these data are described at the back of the journal.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Brachtel, G. \& Hoppe, R. (1978). Z. Anorg. Allg. Chem. 446, 64-76.
Brown, I. D. (1974). J. Solid State Chem. 11, 214-233.
Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Burger, A. \& Ramberger, R. (1979). Mikrochim. Acta, 72, 259-271.
Emme, H. \& Huppertz, H. (2003). Chem. Eur. J. 9, 3623-3633.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gatta, G. D., Rotironi, N., McIntyre, G. J., Guastoni, A. \& Nestola, F. (2008). Am. Mineral. 93, 1158-1165.
Ghose, S., Boving, P., Lachapelle, W. A. \& Wan, C. (1977). Am. Mineral. 62, 1129-1134.
Ghose, S., Sen Gupta, P. K. \& Schlemper, E. O. (1987). Am. Mineral. 72, 629632.

Hansing, J. \& Möller, A. (2001). J. Solid State Chem. 162, 204-213.
Johnston, M. G. \& Harrison, W. T. A. (2001). Inorg. Chem. 40, 6518-6520.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Robinson, K., Gibbs, G. V. \& Ribbe, P. H. (1971). Science, 172, 567-570.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Taylor, R. \& Kennard, O. (1983). Acta Cryst. B39, 517-525.
Wells, A. F. (1962). Structural Inorganic Chemistry, 3rd ed., p. 109. Oxford: Clarendon Press.

